The Alphabet of Knowledge - ABC

Philosophy and Theory of Science General Principles & Items in Terms

John A. Economides

References & Bibliography
Theory of Cosmos, John A. Economides, Athens 2010, Greek
The Universe of Interactions, Athens 2012, English

Life Long Learning Program
Athens College
Thursdays 17:30-19:00 February – May 2024

The Alphabet of Knowledge

Energy and Dynamics
The Scalar Properties of Energy
Variation, Dimension, Motion, Information, Interaction
Theory of Science - Interpretation and Definition
July 2024

Part I

A. Energy

- 1) Energy is the dynamic substance (**charge**), which everything is made of.
- 2) Everything exists in energy and energy does **everything**. The energy charge is **all** and **universal**.
- 3) Energy has two material attributes, power and force. In energy dynamics,
 - i. power is **potential (quantum)** state (charge)
 - ii. force is real (physical) condition (field and elements).
- 4) From **power** and **force** respectively, develop the **scalar** properties of energy which are
 - i. Dynamic relativity (**interchange** between physical and quantum states)
 - ii. Derivative **limitation**, **variation**, **dimension**, **mass**, **motion** and **information**.

- 5) Energy originates from gravitational singularity, which was the starting point of the universal evolution and the **composition** of dimensional mass, via the Big Bang.
 - i. **Gravitational singularity** is the original quantum (power) state of energy.
 - ii. **Dimensional expansion** is the transformation of energy from gravitational singularity to the material plurality of the interchanging, quantum power (state) and the physical (force) condition, of energy.
- 6) In dimensional and material expansion, energy powers variations, which configure into **particles** and **interactions** (interactive particles).
- 7) Interactions are **relations** therefore they are **forces**.

B. Gravity

- 1) Gravity is the **fundamental** force of energy dynamics.
- 2) Gravity is **systolic** (dynamic) form of energy, so it shares
 - i. the attributes of power (charge) and force (field and elements)
 - ii. the scalar properties of energy, limitation, variation, dimension, mass, motion and information.
- 3) Gravity has the properties of
 - i. **density**, which has the attribute of **pressure**
 - ii. **energy**, which has the attribute of **temperature**.
 - a) When **positive** (dynamic and potential), gravity is contractive (**systolic**) and attractive force.
 - b) When negative (defined and real), gravity is expansive (**diastolic**) and repulsive force.
 - c) When neutral, gravity combines the **quantum** and **physical** energy states of material dimensional mass.
 - d) In interim (dimensional) interaction (motion), **quantum** (dynamic) and **physical** (defined) energy states, interchange.
- 4) Gravity is systolic, therefore contractive, dynamic, **non-dimensional**, decomposing force, which decouples into the strong and weak **nuclear** forces and the **electromagnetic** force (atomic interactions). These forces (interactions / relations) decoupled in the density (and **definition**) variation from contraction to

expansion (development of mass) and specifically, in the consequent **decomposition** and **re-composition** (multiplication) process of gravitational singularity.

- 5) The strong and weak **nuclear** forces and the **electromagnetic** force (interactions), are diastolic, therefore expansive, motional, **dimensional** and recomposing **forces**, which recouple into gravity.
- 6) The scalar properties of energy originally combined in the **potential** quantum (dynamic) **simplicity** and singularity of gravitational force (charge) and the **real**John A. Economides '81

The Alphabet of Knowledge

physical (defined) plurality and **multiplicity** of the particular derivative nuclear and electromagnetic forces (field and elements in mass) at the start of the Big Bang evolution.

7) Gravity and the derivate nuclear and electromagnetic forces, relatively **combine** in the contractive non dimensional singularity and then **interchange** in the expansive dimensional, mass energy dynamics (**quantum / physical** interchanges) in symmetric positive – negative scales of **definition**.

C. Dynamics

- Dynamics are the scalar properties / attributes of energy, power and force, limitation, variation, dimension, mass, motion and information. Typically, dynamic is action, motion and information in the dimension of space and in the direction of time.
 - i. In gravity energy dynamics are non dimensional.
 - ii. In the nuclear forces and the electromagnetic force (interactions) energy dynamics are dimensional.
- 2) Energy dynamics configure into the scalar properties of
 - i. power, (which is abstract and **potential**)
 - ii. force, (which is real and applied).
- 3) Energy dynamics configure relatively and specifically in the derivative **interchanges** between the **quantum** (dynamic) and the **physical** (defined) states of the expansive dimensional (structured) mass.

- 4) Dynamic interchanges typically configure into **interactive particles**. Energy dynamics and derivative interchanges, determine **dimension**, **variation**, **definition and information**.
 - Practically, dynamics combine (interchangeably couple and decouple) the four fundamental forces (gravity plus derivative dimensional nuclear and electromagnetic forces).
 - ii. Theoretically, energy dynamics drive the unification of the Standard Model of Classical Physics (physical states of mass) and the theories of General and Special Relativity (gravity, energy and dimensional states of mass) with Quantum Mechanics (quantum states of mass), via the
 - a) Real and potential **unity, continuity** and dynamic **equation** of energy dynamics in subatomic and atomic levels (and between any other division) in universal (structural) mass,
 - b) Interchange of quantum (approximate and uncertain) states with physical (accurate and certain) conditions,
 - c) Mathematical configuration (calculation) of **variable definition** in universal energy dynamics,
 - d) Derivative description and delineation of **Theory of Everything**.

D. Limitation

- 1) Limitation is the fundamental property of **energy** and **gravity**. Limitation configures in the **dynamics** of energy. This configuration features in
 - i. non-dimensional gravity
 - ii. in the **scalar** properties of energy and specifically in **variation**, **motion**, **mass**, **dimension** and **information**.

2) Limitation

- defines the dynamics of energy, is relative in the interchange of quantum and physical states and so determines (describes and prescribes) the properties of the dynamics of energy,
- ii. configures the **scalar** properties of energy in the dimensional and universal (material) **mass**.
- iii. **develops** variation, dimension, definition and information, particularly in the (concurrent) **interchange** of **quantum** and **physical** states of mass.

E. Variation

- 1) **Variation** is the main (**scalar**) property of energy.
- 2) Variation is powered by **energy** and driven and defined by **limitation**.
- 3) Variation and limitation draw from gravitational singularity and from its **dynamic** interchange with material plurality and relative multiplicity.
- 4) Variation unfolds from **gravity**, which is the fundamental state of **energy** and of derivative (dynamic) **potentiality**.
- 5) The (absolute) potentiality of energy power and gravity contracts and expands into the relative (scalar) reality of density (temperature and pressure) in the **variation** of the **dimensional** universe.
- 6) Powered by energy, variation configures the (concurrent) interchanges between **quantum** states and **physical** states and conversely defines the energy conditions of material mass.

F. Dimension

- 1) Dimension is the **scalar** property of energy and attribute of variation, limitation, motion, definition and information.
- 2) In dimension the **general potentiality** of gravitational **singularity** and power (energy and dynamic **charge**) develop into the **particular reality** of nuclear and electromagnetic **plurality** and force (**field**, particles and **elements** of structured mass).
- 3) Dimension (of matter and mass) draws from expansion, variation, motion and information. These features attribute **scalar** properties to dimension, like **change** in **time** and **difference** in **space**.
- 4) Likewise, dimension develops **scale** and **definition** in mass.
- 5) Variations in the power of energy and force, correspond with the variable interchanges between the **quantum** and **physical** states of dimensional (structural and **material**) mass.
- 6) Dimension configures into space and time.

i. Space

- a) Is dimensional (structural) reproduction / **organization** of material mass.
- b) Defines particle interactivity and specifically difference in **position**, motion and direction of energy forces and of the variable (**scalable**) configurations of interactive particles (dynamic elements) composing **material** mass.
- Follows the general structural, formative and infrastructural (organizational) physical features of dimensional and material dynamics.
- d) Essentially dimensional space (with time) is mass.

John A. Economides '81

The Alphabet of Knowledge

- e) Space follows also the general configuration attributes of dimension, **height** (**charge** in time), **width** (**field** in space), **length** (**element** in special temporal motion).
- f) Space **defines** time.

ii. Time

- a) Is dimensional (systemic) interaction / **relation** of energy.
- b) Defines particle interactivity and specifically, change in energy, therefore motion, velocity and momentum of energy forces and of the variable (scalable) configurations of interactive particles composing mass (matter).
- c) Follows the particular systemic, relational, functional and **framework** features of dimension.
- d) Essentially dimensional time (with space) is mass.
- e) Is defined in the dynamics of the **running present** in dimensional space. In the present of motion, flows the variation between
 - a. the **past**, which is precise and **physical**,
 - b. the **future** which is probable and **quantum**.
- f) The dynamic combination of the reality of the past and the potentiality of the future in the running present, produces limitation, variation, dimension, mass, motion and information in spatial mass.
- g) Time defines space.

G. Information

- 1) Information is the scalar configuration (**formation** and **definition**) of the **dimension** of mass.
- 2) Information is the product of limitation, variation, dimension and motion in mass.
- 3) Information is
 - i. static in space,
 - ii. dynamic in time
 - iii. conditional in the dimension of space time.
- 4) The flow of time and the development of information are **transitional** and **transformative** (organizational) attributes of **dimensional** matter and mass powered by energy.
- 5) Information is driver of dynamics because it is integral in the properties of energy.
 - i. Real, fixed and spatial attributes of information refer to the certain and precise (physical) **past**.
 - ii. Potential, variable and temporal attributes of information refer to the uncertain and probable (quantum) **future**.
- 6) These attributes which feature in structure and form, system and function, define motion and dimension through the interchange of states of material mass in the currency of the (running) present.

H. Quantum states

- 1) Quantum states are **dynamic** conditions of **lower definition** (and limitation) at fundamental or elementary (**micro**) levels of the composition of dimensional energy and the construction of material mass.
- 2) Quantum states are indicative of the scale of variation (motion, mass, dimension, definition and information) and of the dynamics of energy.
- 3) These states are **approximate** conditions of lower definition at the **potential indefinite** levels of dimension.
- 4) The future in time is derivative of quantum state, therefore it is **dynamic** and **probable**.

- 5) Quantum states are frequently referred as "dark" (matter and energy) conditions due to lower definition (and consolidation) at earlier stages of universal energy dimension (foundation, configuration, construction) and evolution.
- 6) In the universal conjecture, decomposition of quantum states and re-composition of physical states, **interchange** at variable gradations of the dynamics of energy, in the currency of **motion** and in the (running) **present**.

I. Physical states

- 1) Physical states are **dynamic** conditions of **higher definition** (and limitation) at composite and complex (**macro**) levels of the construction of dimensional energy and the composition of material mass.
- 2) Physical states are indicative of the scale of variation (motion, mass, dimension, information) and of the dynamics of energy.
- 3) These states are **accurate** conditions of higher definition at the real definite levels of dimension.
- 4) Physical states are frequently referred as "luminous" (matter and energy) conditions due to higher definition (and consolidation) at later stages of universal energy dimension (foundation, configuration, construction) and evolution (mainly due to the separation of photons, electrons and of derivative radiation and light).
- 5) In the universal conjecture, re-composition of physical states **interchange** with decomposition of quantum states at variable gradations of the dynamics of energy, in the currency of **motion** and in the (running) **present**.

J. Particles and Interactions

- 1) Particles and Interactions are the main **material** configurations (elements) and **energy** carriers of relational interchanges of quantum and physical states. Interactive particles combine the potentiality of the dynamics of pressure and temperature with the material reality of **variation** in density and dimension.
- 2) Particles and interactions run motion in dynamic dimensional mass. More specifically,
 - Particles are high energy and density states of relative definition (concentrations). Therefore, particles are material (physical) states of energy.

- ii. Particles interchange (alternate) their energy state with interactions.
- iii. Particles denote real (fixed / precise) position of material in the dimension of **space**.
- iv. **Interactions** are **low energy** and **density** states of relative definition (**expansions**). Therefore, interactions are quantum states of energy. Interactions interchange (alternate) the real energy states of particles. Interactions denote potential (variable / probable) direction of energy dynamics in the dimension of **motion** and **time**.

Furthermore,

- v. Interactions are sequences of **interchanging actions** and **reactions**.
 - a) Particles confer power.
 - b) Interactions convey forces.
- vi. According to the dynamics of energy, recurring interactions grow into replications and reproductions.
 - a) Interactions develop relations.
 - b) Reproductions develop organizations.
 - c) Interactions and reproductions develop **conditions**.
- vii. Relations, organizations and conditions grow into **structures** and **systems**, **forms** and **functions**.
- viii. Interactions are relational forces, which develop bonds between particles (objects and entities).

K. Mass

- 1) Mass is the universal **framework** and **fabric** of energy in **scalable gradations** of **definition** and **configuration**.
- 2) Mass composes of **quantum** variations, at the "**dark**" **lower** level and of physical interactive **particles** and **entities**, which are more defined, at the "**luminous**" **higher** level of energy and density gradation and organization.
- 3) Mass grows in the transition from **contractive dynamic quantum** singularity of **energy** and gravity to the **expansive physical plurality** of **materiality**, particularity and interactivity.

- 4) In this transition, gravity gradually and progressively transcends into the strong nuclear force, the weak nuclear force and the electromagnetic force and in the evolution of material **composition**, **dimension**, **definition** and **specification**.
- 5) The decomposition and re-composition of gravity in the decoupling of the nuclear and the electromagnetic forces, is fundamental structural and systematic variation of energy in the **evolution** of universal mass.
- 6) The fundamental forces (interactions) further configure energy into various forms like the kinetic energy, the potential energy, the elastic energy, the chemical energy, the radiant energy and the thermal energy between material substances, objects and entities.
- 7) The variable interchange of **quantum** energy states and **physical** material states determines the **dynamics** of activity and definition in the dimensional (structural, formative, functional and systematic) mass.

L. Motion

- 1) Motion is the typical form of **variation** and **activity** in dimensional mass.
- 2) Energy powers motion of particles, entities and objects via **interaction** (force) in the **dimension** of space and time.
- 3) This **force** is fundamentally gravity in positive or negative configuration. The derivative nuclear and electromagnetic forces are also at play in motion. Corollary **limitation** determines momentum and **direction** of motion.
- 4) Motion is typical combination (concurrency) of interchanges of **quantum** states with **physical** states and configuration of definition variations (levels).
- 5) Motion specifically configures into the **change** of **position** of the dynamic particle in **dimensional material** mass.
- 6) The configuration of **power** and **force** in velocity (**acceleration** and rate of **speed**) is the main factor of motion which denotes the dynamics of energy in this dimensional function. Other factors are **displacement**, **direction** and **distance**.
- 7) Motion configures variation into frequency by way of fluctuation when **extended** and circulation when **condensed**.
- 8) The dynamics of motion, determine the relative conditions of dimension and direction, positive and negative.

- i. In **high** velocity, direction is **linear** (frequency low).
- ii. In **low** velocity, direction is **elliptic** (frequency high).
- iii. In **neutral** velocity direction is **cyclical** (dynamic) and depending on dynamics, **spherical** (**contractive**).
- 9) The velocity and direction of (particle position in) motion depends on (particle) interaction which confers energy in the dynamic **interchanges** of physical and quantum states (of mass). For example, linear direction runs at the **limit** of elliptic motion and specifically at the limit of speed, space and displacement (as in light photons).
- 10) The linear limit of fluctuation and frequency and so of quantum invariance in linear motion is displayed in the maximum velocity of dimensional mass (example E=mc2).
- 11) Changes of direction are indicative of variations in the dynamic combinations of **quantum** states and **physical** states and specifically in the composition of frequency in (particle) **interaction** and velocity in **motion**.

Athens, 27.7.2024

Contact Details

John A. Economides is attorney at law with academic interest in Evolutionary Cosmology and in Philosophy of Science. He specializes on energy dynamics, scalar properties and in interaction, information, education and evolution. His main work on the subject is the **"Theory of Cosmos"** in Greek published in 2010 and **"The Universe of Interactions"** in English published in 2012.

His contact details are:

John A. Economides

Attorney at law

Aristides Economides & Co 26 Acadimias Avenue Athens 106 71 Greece

T. +30 210 3634741 **M.** +30 6972 872733

john.economides@economidesco.gr https://economidesco.gr/

https://economidesco.gr/academic/